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C2-symmetric bis-sulfoxide organocatalysts
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Abstract—Novel C2-symmetric bis-sulfoxide/N-oxide (R,R)-5 was prepared in good yield according to the Andersen protocol with
(S)-menthyl p-tolyl sulfinate (2 equiv) and the dilithium derivate of 2,6-dimethylpyridine N-oxide. Reduction of (R,R)-5 to pyridine/
bis-sulfoxide (R,R)-6 was accomplished by means of Katritzky’s procedure (Fe0/AcOH). Both bis-sulfoxides (R,R)-5 and (R,R)-6
are efficient chiral organocatalysts in the asymmetric allylation of N-benzoyl hydrazones derived from both aldehydes and ketones.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of practical enantioselective syntheses
of chiral amines is of great relevance to synthetic organic
chemistry. In particular, enantiopure homoallylic
amines are useful intermediates for the preparation of
nitrogen-containing compounds, which are biologically
active.1 In this regard, resonance-stabilized allyl organo-
metallics have been used with success in imine addition
reactions;2 nevertheless, metal-free organic molecule-
catalyzed allylation reactions are most attractive in
terms of reagent stability and environmentally benign
nature relative to metal complex-catalysts.3

A major problem encountered in the addition of allyl-
metals to imines is competitive a-deprotonation.4 This
complication can be solved at least in part, by the use
of allylsilanes;2,5 nevertheless, their relative low reactiv-
ity usually requires the use of catalysts. In particular,
allyltrichorosilanes are essentially inert to the electro-
philic imines in the absence of external promoters.
Therefore, activation of the reaction has been achieved
in two ways: (1) by the use of Lewis acid catalysis,
including asymmetric variants using chiral Lewis acids,
which activate the imine,6 and (2) by means of a Lewis
base, which activates the nucleophile via coordination
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to the silicon atom of the allyltrichlorosilanes to form
hypervalent silicon intermediates. In particular, N,N-
dimethylformamide (DMF),7 hexamethylphosphor-
amide (HMPA),7 N-oxides,8 P-oxides,9 and ureas,10

including their optically active derivatives for asymmet-
ric catalysis,6b promote the allylation of aldehydes.

Recently, the use of chiral sulfoxides 1–3 (Chart 1) as
ligands in the enantioselective allylation of aldehydes and
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(S)-1f (p-MeOC6H4, Me) 
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Chart 1.

mailto:juaristi@relaq.mx


8236 F. Garcı́a-Flores et al. / Tetrahedron Letters 47 (2006) 8235–8238
hydrazones has been explored by several researchers,11–13

with observed enantioselectivities that vary from poor to
very good enantiomeric excesses.

Attracted by the wide applicability of enantiopure sulf-
oxides in asymmetric carbon–carbon bond formation,14

and intrigued by the possibility of bidentate complex
formation between the silicon moiety in allyltrichloro-
silane and C2-symmetric chiral ligands,15 we undertook
the synthesis of novel bis-sulfoxides (R,R)-5 and (R,R)-
6 and the examination of their potential as promoters in
the asymmetric allylation of N-benzoyl hydrazones
derived from aldehydes and ketones.
2. Results and discussion

The synthesis of novel bis-sulfoxides (R,R)-5 and (R,R)-6
was carried out following the general method developed
by Andersen.16 Thus, (S)-(�)-menthyl p-tolylsulfinate, 4,
was prepared according to the literature procedure17 and
was made to react with the dilithium derivate of 2,6-
dimethylpyridine N-oxide.18 The desired bis-sulfoxide/
N-oxide (R,R)-5, arising from the inversion of configura-
tion at the sulfinate’s stereogenic sulfur,19 was obtained
as white solid in a good yield.20 Bis-sulfoxide (R,R)-6
was prepared from (R,R)-5 by the reduction with Fe0/
CH3CO2H according to the general method of Katritzky
and co-workers21,22 (Scheme 1).

Table 1 summarizes the results obtained when allylation
of the N-benzoyl hydrazone derived from benzaldehyde
N
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Scheme 1.
(7) was promoted by achiral dimethylsulfoxide
(DMSO), by chiral monosulfoxide (R)-methyl p-tolyl
sulfoxide (MTS), and by C2-symmetric bis-sulfoxides
(R,R)-5 and (R,R)-6. The conditions employed by
Kobayashi et al.11 were followed, using 1.5 or 3.0 equiv
of the sulfoxides.23

Analysis of the observations collected in Table 1 reveals
that bis-sulfoxide/N-oxide (R,R)-5 is quite efficient in
promoting the enantioselective allylation of hydrazone
7a with allyltrichlorosilane (er = 12:88, entry 3 in Table
1). By contrast, lower enantioinduction is observed with
bis-sulfoxide (R,R)-6. Indeed, the er = 20:80 of the ally-
lated hydrazide (entry 4 in Table 1) is essentially the
same as the one achieved with (R)-methyl p-tolyl sulf-
oxide (er = 21:79, entry 2 in Table 1). Although the yield
of the allylation reaction in the presence of (R,R)-6 is
lower than those achieved with monosulfoxide (R)-MTS,
it should be mentioned that no allylation takes place
in the absence of sulfoxide activator.

Table 2 compiles the results of the allylation reaction
(allyltrichlorosilane) of various prochiral N-benzoyl-
hydrazones 7a–f in the presence of chiral bis-sulfoxides
(R,R)-5 and (R,R)-6.

The configuration of the major enantiomeric N-benzoyl
hydrazide 8b was assigned as (S) by comparison of its
optical rotation with that already assigned in the litera-
ture.11a Because of the similitude in optical rotation and
chromatographic (chiral HPLC) retention times,24 the
predominant enantiomeric products 8a and 8c were also
N
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Table 1. Allylation of N-benzoyl-N 0-benzyledene-hydrazone with allyltrichlorosilane using various sulfoxides (L) as promotersa

Ph

N

H

NHCOPh

+
SiCl3 L (equiv.)

CH2Cl2 / -78 ºC
Ph

HN

NHCOPh

*

Entry L (equiv) Yield Enantiomeric ratio (R:S)b

1 DMSO 3 98 (50:50)
2 (R)-MTSc 3 94 (21:79)
3 (R,R)-5 1.5 89 (12:88)
4 (R,R)-6 1.5 73 (20:80)

a Half equivalent of 2-methyl-2-butene was added to suppress the racemization of the chiral sulfoxides.11

b Determined by chiral HPLC.24

c (R)-Methyl-p-tolyl sulfoxide.

Table 2. Allylation of various N-benzoyl-hydrazones 7a–f with allyltrichlorosilane under catalysis by C2-symmetric organocatalysts (R,R)-5 and
(R,R)-6a

R1

N

R2

NHCOPh

+
SiCl3 L* (1.5 equiv.)

CH2Cl2 / -78 ºC
R1

HN

NHCOPh

*

7a-f
R2

8a-f

Entry Substrate (R1/R2) L* Yield of 8 Enantiomeric ratio (R:S)b

1 7a (Ph/H) (R,R)-5 89 12:88
2 7a (R,R)-6 73 21:79
3 7b (p-MeOC6H4/H) (R,R)-5 80 14:86
4 7b (R,R)-6 72 30:70
5 7c (m-MeOC6H4/H) (R,R)-5 93 18:82
6 7c (R,R)-6 68 30:70
7 7d (2-Furyl/H) (R,R)-5 84 16:84c

8 7d (R,R)-6 54 45:55c

9 7e (Me2CHCH2/H) (R,R)-5 81 74:26c

10 7e (R,R)-6 56 50:50
11 7f (Ph/Me) (R,R)-5 82 20:80
12 7f (R,R)-6 30 87:13

a Half equivalent of 2-methyl-2-butene was added to suppress the racemization of the chiral sulfoxides.11

b Determined by chiral HPLC.24

c This configurational assignment is tentative (see text).
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assigned as (S). The absolute configuration in hydrazide
(R)-(+)-8f was determined by Leighton et al.5b Interest-
ingly, organocatalysts (R,R)-5 and (R,R)-6 induce the
formation of enantiomeric products of opposite config-
uration, suggesting that coordination to the N! O
group is operative and determinant. The configurational
assignments of hydrazides 8d and 8e are tentatively
assigned in Table 2 on the basis of optical rotation
and chromatographic behavior.

Salient observations from the results compiled in Table 2
are (1) the ability of both bis-sulfoxides (R,R)-5 and
(R,R)-6 to catalyze the allylation of N-benzoyl hydraz-
ones derived from both aliphatic and aromatic aldehydes
and ketones; (2) the efficiency of N-oxide/bis-sulfoxide
(R,R)-5 is generally higher relative to the exhibited by
pyridine/bis-sulfoxide (R,R)-6. This finding might sug-
gest an effective coordination by the N! O group.

In summary, novel C2-symmetric bis-sulfoxides (R,R)-5
and (R,R)-6 are efficient organocatalysts in the enantio-
selective allylation of N-benzoyl hydrazones derived
from both aldehydes and ketones. The potential applica-
tion of these chiral Lewis bases in other asymmetric C–C
bond forming reactions is being explored.
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255; (b) Berkessel, A.; Gröger, H. Asymmetric Organo-
catalysis: From Biomimetic Concepts to Applications in
Asymmetric Synthesis; Wiley-VCH: Weinheim, 2005; (c)
Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43,
5138; (d) Houk, K. N.; List, B. Acc. Chem. Res. 2004, 37,
487; (e) List, B.; Bolm, C. Adv. Synth. Catal. 2004, 346,
1021; (f) Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. Rev.
2003, 103, 3401; (g) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2001, 40, 3726.

4. (a) Keck, G. E.; Enholm, E. J. J. Org. Chem. 1985, 50, 146;
(b) Hoffmann, R. W.; Endesfelder, A. Liebigs Ann. Chem.
1987, 215.

5. (a) Berger, R.; Rabbat, P. M. A.; Leighton, J. L. J. Am.
Chem. Soc. 2003, 125, 9596; (b) Berger, R.; Duff, K.;
Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686.

6. (a) Yamamoto, H. In Lewis Acids in Organic Synthesis;
Wiley-VCH: Weinheim, 1999; Vols. 1 and 2, and refer-
ences cited therein; (b) Denmark, S. E.; Fu, J. Chem. Rev.
2003, 103, 2763.

7. Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59,
6620.

8. (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J.
Am. Chem. Soc. 1998, 120, 6419; (b) Nakajima, M.; Saito,
M.; Hashimoto, S. Tetrahedron: Asymmetry 2002, 13,
2449; (c) Shimada, T.; Kina, A.; Ikeda, S.; Hayashi, T.
Org. Lett. 2002, 4, 2799; (d) Malkov, A. V.; Dufková, L.;
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